Plant inter-species effects on rhizosphere priming of soil organic matter decomposition
نویسندگان
چکیده
Living roots and their rhizodeposits can stimulate microbial activity and soil organic matter (SOM) decomposition up to several folds. This so-called rhizosphere priming effect (RPE) varies widely among plant species possibly due to species-specific differences in the quality and quantity of rhizodeposits and other root functions. However, whether the RPE is influenced by plant inter-species interactions remains largely unexplored, even though these interactions can fundamentally shape plant functions such as carbon allocation and nutrient uptake. In a 60-day greenhouse experiment, we continuously labeled monocultures and mixtures of sunflower, soybean and wheat with 13C-depleted CO2 and partitioned total CO2 efflux released from soil at two stages of plant development for SOMand root-derived CO2. The RPE was calculated as the difference in SOM-derived CO2 between the planted and the unplanted soil, and was compared among the monocultures and mixtures. We found that the RPE was positive under all plants, ranging from 43% to 136% increase above the unplanted control. There were no significant differences in RPE at the vegetative stage. At the flowering stage however, the RPE in the soybeanewheat mixture was significantly higher than those in the sunflower monoculture, the sunflowerewheat mixture, and the sunfloweresoybean mixture. These results indicated that the influence of plant inter-specific interactions on the RPE is case-specific and phenology-dependent. To evaluate the intensity of inter-specific effects on priming, we calculated an expected RPE for the mixtures based on the RPE of the monocultures weighted by their root biomass and compared it to the measured RPE under mixtures. At flowering, the measured RPE was significantly lower for the sunflowerewheat mixture than what can be expected from their monocultures, suggesting that RPE was significantly reduced by the inter-species effects of sunflower and wheat. In summary, our results clearly demonstrated that inter-species interactions can significantly modify rhizosphere priming on SOM decomposition. 2012 Elsevier Ltd. All rights reserved.
منابع مشابه
Plant biomass influences rhizosphere priming effects on soil organic matter decomposition in two differently managed soils
We used a continuous labeling method of naturally C-depleted CO2 in a growth chamber to test for rhizosphere effects on soil organic matter (SOM) decomposition. Two C3 plant species, soybean (Glycine max) and sunflower (Helianthus annus), were grown in two previously differently managed soils, an organically farmed soil and a soil from an annual grassland. We maintained a constant atmospheric C...
متن کاملRhizosphere Effects on Decomposition: Controls of Plant Species, Phenology, and Fertilization
or a suppressive influence on SOM decomposition (Van Veen et al., 1991; Cheng, 1999). As a measure of main Plant species and soil fertility presumably control rhizosphere efenergy use for the acquisition of belowground resources fects on soil organic matter (SOM) decomposition, but qualitative (e.g., nutrients and water), rhizosphere respiration may and quantitative descriptions of such control...
متن کاملNodulated soybean enhances rhizosphere priming effects on soil organic matter decomposition more than non-nodulated soybean
The phenomenon that rhizosphere processes significantly control soil organic matter (SOM) decomposition, also termed rhizosphere priming effect (RPE), is now increasingly recognized as significant as the effects of soil temperature and moisture on SOM decomposition. However, the exact mechanisms responsible for RPE remain largely unknown. Particularly, some reports have suggested that the quali...
متن کاملRhizosphere priming effect increases the temperature sensitivity of soil organic matter decomposition
The temperature sensitivity of soil organic matter (SOM) decomposition has been a crucial topic in global change research, yet remains highly uncertain. One of the contributing factors to this uncertainty is the lack of understanding about the role of rhizosphere priming effect (RPE) in shaping the temperature sensitivity. Using a novel continuous C-labeling method, we investigated the temperat...
متن کاملMoisture modulates rhizosphere effects on C decomposition in two different soil types
While it is well known that soil moisture directly affects microbial activity and soil organic matter (SOM) decomposition, it is unclear if the presence of plants alters these effects through rhizosphere processes. We studied soil moisture effects on SOM decomposition with and without sunflower and soybean. Plants were grown in two different soil types with soil moisture contents of 45% and 85%...
متن کامل